As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
translated by 谷歌翻译
应对深层终身强化学习(LRL)挑战的一种方法是仔细管理代理商的学习经验,以学习(不忘记)并建立内部元模型(任务,环境,代理商和世界)。生成重播(GR)是一种以生物学启发的重播机制,可以通过从内部生成模型中绘制的自标记示例来增强学习经验,该模型随着时间的推移而更新。在本文中,我们提出了一个满足两个Desiderata的GR版本:(a)使用深RL学习的策略的潜在策略的内省密度建模,以及(b)无模型的端到端学习。在这项工作中,我们研究了三个无模型GR的深度学习体系结构。我们在三种不同的情况下评估了我们提出的算法,其中包括来自Starcraft2和Minigrid域的任务。我们报告了几个关键发现,显示了设计选择对定量指标的影响,包括转移学习,对看不见的任务的概括,任务更改后的快速适应,与任务专家相当的绩效以及最小化灾难性遗忘。我们观察到我们的GR可以防止从深层批评剂的潜在矢量空间中的特征映射中漂移。我们还显示了既定的终身学习指标的改进。我们发现,当与重播缓冲液和生成的重播缓冲液结合使用时,需要引入一个小的随机重放缓冲液,以显着提高训练的稳定性。总体而言,我们发现“隐藏的重播”(一种众所周知的班级入学分类体系结构)是最有前途的方法,它推动了LRL的GR中最新的方法。
translated by 谷歌翻译
我们提出了一系列两项研究,以了解基于语音的人机相互作用期间用户的情感状态。重点放在通信错误或失败的情况下。特别是,我们有兴趣了解与其他情感状态有关的“混乱”。研究由两种类型的任务组成:(1)与基于语音的虚拟代理的通信有关:与机器交谈并了解机器所说的话,(2)与参与者解决的无通信,解决问题的任务难题和谜语,但被要求口头解释机器的答案。我们收集了参与者情感状态的视听数据和自我报告。我们报告了两项研究的结果和分析收集的数据。根据注释者的观察对第一项研究进行了分析,并根据自我报告分析了第二项研究。
translated by 谷歌翻译
Applying Machine learning to domains like Earth Sciences is impeded by the lack of labeled data, despite a large corpus of raw data available in such domains. For instance, training a wildfire classifier on satellite imagery requires curating a massive and diverse dataset, which is an expensive and time-consuming process that can span from weeks to months. Searching for relevant examples in over 40 petabytes of unlabelled data requires researchers to manually hunt for such images, much like finding a needle in a haystack. We present a no-code end-to-end pipeline, Curator, which dramatically minimizes the time taken to curate an exhaustive labeled dataset. Curator is able to search massive amounts of unlabelled data by combining self-supervision, scalable nearest neighbor search, and active learning to learn and differentiate image representations. The pipeline can also be readily applied to solve problems across different domains. Overall, the pipeline makes it practical for researchers to go from just one reference image to a comprehensive dataset in a diminutive span of time.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Authorship style transfer involves altering the style of text to match the style of some target author whilst preserving the semantic meaning of the original text. Existing approaches to unsupervised authorship style transfer like STRAP have largely focused on style transfer for target authors with many examples of their writing style through books, speeches, or other published works (Krishna et al., 2020). Due to this high-resource training data requirement (often greater than 100,000 words), these approaches are often only useful for style transfer to the style of published authors, politicians, or other well-known figures and authorship styles. In this paper, we attempt to perform low-resource authorship style transfer, a more challenging class of authorship style transfer where only a limited amount of text in the target author's style may exist. In our experiments, we specifically choose source and target authors from Reddit to perform style transfer over their Reddit posts, limiting ourselves to just 16 posts (on average $\approx$ 500 words) of the target author's style. We then propose a method for automatic evaluation on the low-resource authorship style transfer task utilizing authorship and style representation embeddings (Rivera-Soto et al., 2021; Wegmann et al., 2022). We evaluate our style transferred outputs with the proposed automatic evaluation method and find that our method, STYLL, is able to outperform STRAP and a comprehensive set of baselines.
translated by 谷歌翻译
Knowledge graph (KG) is used to represent data in terms of entities and structural relations between the entities. This representation can be used to solve complex problems such as recommendation systems and question answering. In this study, a set of candidate drugs for COVID-19 are proposed by using Drug repurposing knowledge graph (DRKG). DRKG is a biological knowledge graph constructed using a vast amount of open source biomedical knowledge to understand the mechanism of compounds and the related biological functions. Node and relation embeddings are learned using knowledge graph embedding models and neural network and attention related models. Different models are used to get the node embedding by changing the objective of the model. These embeddings are later used to predict if a candidate drug is effective to treat a disease or how likely it is for a drug to bind to a protein associated to a disease which can be modelled as a link prediction task between two nodes. RESCAL performed the best on the test dataset in terms of MR, MRR and Hits@3.
translated by 谷歌翻译
Deep neural networks (DNNs) have rapidly become a \textit{de facto} choice for medical image understanding tasks. However, DNNs are notoriously fragile to the class imbalance in image classification. We further point out that such imbalance fragility can be amplified when it comes to more sophisticated tasks such as pathology localization, as imbalances in such problems can have highly complex and often implicit forms of presence. For example, different pathology can have different sizes or colors (w.r.t.the background), different underlying demographic distributions, and in general different difficulty levels to recognize, even in a meticulously curated balanced distribution of training data. In this paper, we propose to use pruning to automatically and adaptively identify \textit{hard-to-learn} (HTL) training samples, and improve pathology localization by attending them explicitly, during training in \textit{supervised, semi-supervised, and weakly-supervised} settings. Our main inspiration is drawn from the recent finding that deep classification models have difficult-to-memorize samples and those may be effectively exposed through network pruning \cite{hooker2019compressed} - and we extend such observation beyond classification for the first time. We also present an interesting demographic analysis which illustrates HTLs ability to capture complex demographic imbalances. Our extensive experiments on the Skin Lesion Localization task in multiple training settings by paying additional attention to HTLs show significant improvement of localization performance by $\sim$2-3\%.
translated by 谷歌翻译
When developing deep learning models, we usually decide what task we want to solve then search for a model that generalizes well on the task. An intriguing question would be: what if, instead of fixing the task and searching in the model space, we fix the model and search in the task space? Can we find tasks that the model generalizes on? How do they look, or do they indicate anything? These are the questions we address in this paper. We propose a task discovery framework that automatically finds examples of such tasks via optimizing a generalization-based quantity called agreement score. We demonstrate that one set of images can give rise to many tasks on which neural networks generalize well. These tasks are a reflection of the inductive biases of the learning framework and the statistical patterns present in the data, thus they can make a useful tool for analysing the neural networks and their biases. As an example, we show that the discovered tasks can be used to automatically create adversarial train-test splits which make a model fail at test time, without changing the pixels or labels, but by only selecting how the datapoints should be split between the train and test sets. We end with a discussion on human-interpretability of the discovered tasks.
translated by 谷歌翻译
Recent improvements in conditional generative modeling have made it possible to generate high-quality images from language descriptions alone. We investigate whether these methods can directly address the problem of sequential decision-making. We view decision-making not through the lens of reinforcement learning (RL), but rather through conditional generative modeling. To our surprise, we find that our formulation leads to policies that can outperform existing offline RL approaches across standard benchmarks. By modeling a policy as a return-conditional diffusion model, we illustrate how we may circumvent the need for dynamic programming and subsequently eliminate many of the complexities that come with traditional offline RL. We further demonstrate the advantages of modeling policies as conditional diffusion models by considering two other conditioning variables: constraints and skills. Conditioning on a single constraint or skill during training leads to behaviors at test-time that can satisfy several constraints together or demonstrate a composition of skills. Our results illustrate that conditional generative modeling is a powerful tool for decision-making.
translated by 谷歌翻译